Unstructured ΛCDM model
As an alternative to the modular structure in terms of physical components, SymBoltz provides a full unstructured ΛCDM model for those that prefer to work with everything in one large system. This includes all variables, parameters and equations in the background, thermodynamics and perturbations. This makes it extremely easy to make direct changes anywhere in the model!
using SymBoltz
# constants and some functions
@unpack kB, h, ħ, c, GN, H100, eV, me, mH, mHe, σT, aR, δkron, smoothifelse = SymBoltz
lγmax = 6
lνmax = 6
lhmax = 6
ϵ = 1e-9
ΛH = 8.2245809
ΛHe = 51.3
λH∞1s = 91.17534e-9; fH∞1s = c/λH∞1s; EH∞1s = h*fH∞1s
λH2s1s = 121.56700e-9; fH2s1s = c/λH2s1s; EH2s1s = h*fH2s1s
EH∞2s = EH∞1s - EH2s1s
λHe∞1s = 50.42590e-9; fHe∞1s = c/λHe∞1s; EHe∞1s = h*fHe∞1s
λHe2s1s = 60.14045e-9; fHe2s1s = c/λHe2s1s; EHe2s1s = h*fHe2s1s
λHe2p1s = 58.43344e-9; fHe2p1s = c/λHe2p1s; EHe2p1s = h*fHe2p1s
EHe2p2s = EHe2p1s - EHe2s1s
EHe∞2s = EHe∞1s - EHe2s1s
EHe⁺∞1s = 54.4178 * eV
λHet∞2s = 260.0463e-9; fHet∞2s = c/λHet∞2s; EHet∞2s = h*fHet∞2s
λHet2p1s = 59.1411e-9; fHet2p1s = c/λHet2p1s; EHet2p1s = h*fHet2p1s
λHet2s1s = 62.5563e-9; fHet2s1s = c/λHet2s1s; EHet2s1s = h*fHet2s1s
EHet2p2s = EHet2p1s - EHet2s1s
A2ps = 1.798287e9
A2pt = 177.58e0
αHfit(T; F=1.125, a=4.309, b=-0.6166, c=0.6703, d=0.5300, T₀=1e4) = F * 1e-19 * a * (T/T₀)^b / (1 + c * (T/T₀)^d)
αHefit(T; q=NaN, p=NaN, T1=10^5.114, T2=3.0) = q / (√(T/T2) * (1+√(T/T2))^(1-p) * (1+√(T/T1))^(1+p))
KHfitfactorfunc(a, A, z, w) = A*exp(-((log(a)+z)/w)^2)
γHe(; A=NaN, σ=NaN, f=NaN) = 3*A*fHe*(1-XHe⁺+ϵ)*c^2 / (8π*σ*√(2π/(β*mHe*c^2))*(1-XH⁺+ϵ)*f^3)
# massive neutrino distribution function and quadrature momenta
nx = 4
f₀(x) = 1 / (exp(x) + 1)
dlnf₀_dlnx(x) = -x / (1 + exp(-x))
x, W = SymBoltz.momentum_quadrature(f₀, nx)
∫dx_x²_f₀(f) = sum(collect(f .* W))
@independent_variables τ # conformal time
D = Differential(τ) # derivative operator
pars = @parameters begin
k, τ0, # wavenumber and conformal time today
h, # reduced Hubble parameter (overwrites Planck constant above!)
Ωc0, # cold dark matter
Ωb0, YHe, fHe, # baryons and recombination
Tγ0, Ωγ0, # photons
Ων0, Tν0, Neff, fν, # massless neutrinos
mh, mh_eV, Nh, Th0, Ωh0, yh0, Iρh0, # massive neutrinos
ΩΛ0, # cosmological constant
zre1, Δzre1, nre1, # 1st reionization
zre2, Δzre2, nre2, # 2nd reionization
C # integration constant in initial conditions
end
vars = @variables begin
a(τ), z(τ), ℋ(τ), H(τ), Ψ(τ,k), Φ(τ,k), # metric
ρ(τ), P(τ), δρ(τ,k), Π(τ,k), # gravity
ρb(τ), Tb(τ), θb(τ,k), δb(τ,k), θb(τ,k), # baryons
κ(τ), κ̇(τ), csb2(τ), β(τ), ΔT(τ), DTb(τ), DTγ(τ), μc²(τ), Xe(τ), nH(τ), nHe(τ), ne(τ), Xe(τ), ne(τ), λe(τ), Hrec(τ), # recombination
XH⁺(τ), nH(τ), αH(τ), βH(τ), KH(τ), KHfitfactor(τ), CH(τ) # Hydrogen recombination
nHe(τ), XHe⁺(τ), XHe⁺⁺(τ), αHe(τ), βHe(τ), RHe⁺(τ), τHe(τ), KHe(τ), invKHe0(τ), invKHe1(τ), invKHe2(τ), CHe(τ), DXHe⁺(τ), DXHet⁺(τ), γ2ps(τ), αHet(τ), βHet(τ), τHet(τ), pHet(τ), CHet(τ), CHetnum(τ), γ2pt(τ), # Helium recombination
Xre1(τ), Xre2(τ), # reionization
ργ(τ), Pγ(τ), wγ(τ), Tγ(τ), Fγ0(τ,k), Fγ(τ,k)[1:lγmax], Gγ0(τ,k), Gγ(τ,k)[1:lγmax], δγ(τ,k), θγ(τ,k), σγ(τ,k), Πγ(τ,k) # photons
ρc(τ), δc(τ,k), θc(τ,k) # cold dark matter
ρν(τ), Pν(τ), wν(τ), Tν(τ), Fν0(τ,k), Fν(τ,k)[1:lνmax], δν(τ,k), θν(τ,k), σν(τ,k), # massless neutrinos
ρh(τ), Ph(τ), wh(τ), Ωh(τ), Th(τ), yh(τ), csh2(τ,k), δh(τ,k), σh(τ,k), uh(τ,k), θh(τ,k), Eh(τ)[1:nx], ψh0(τ,k)[1:nx], ψh(τ,k)[1:nx,1:lhmax], Iρh(τ), IPh(τ), Iδρh(τ,k), # massive neutrinos
ρΛ(τ), PΛ(τ), wΛ(τ) # cosmological constant
end
eqs = [
# metric equations
z ~ 1/a - 1
ℋ ~ D(a) / a
H ~ ℋ / a
# gravity equations
D(a) ~ √(8*Num(π)/3 * ρ) * a^2 # 1st Friedmann equation
D(Φ) ~ -4*Num(π)/3*a^2/ℋ*δρ - k^2/(3*ℋ)*Φ - ℋ*Ψ
k^2 * (Φ - Ψ) ~ 12*Num(π) * a^2 * Π
ρ ~ ρc + ρb + ργ + ρν + ρh + ρΛ
P ~ Pγ + Pν + Ph + PΛ
δρ ~ δc*ρc + δb*ρb + δγ*ργ + δν*ρν + δh*ρh
Π ~ (1+wγ)*ργ*σγ + (1+wν)*ρν*σν + (1+wh)*ρh*σh
# baryon recombination
β ~ 1 / (kB*Tb)
λe ~ 2π*ħ / √(2π*me/β)
Hrec ~ H100 * h * H
fHe ~ YHe / (mHe/mH*(1-YHe))
D(κ) ~ -a/(H100*h) * ne * σT * c
κ̇ ~ D(κ)
csb2 ~ kB/μc² * (Tb - D(Tb)/3ℋ)
μc² ~ mH*c^2 / (1 + (mH/mHe-1)*YHe + Xe*(1-YHe))
DTb ~ -2*Tb*ℋ - a/h * 8/3*σT*aR/H100*Tγ^4 / (me*c) * Xe / (1+fHe+Xe) * ΔT
DTγ ~ D(Tγ)
D(ΔT) ~ DTb - DTγ
Tb ~ ΔT + Tγ
nH ~ (1-YHe) * ρb*(H100*h)^2/GN / mH
nHe ~ fHe * nH
ne ~ Xe * nH
Xe ~ 1*XH⁺ + fHe*XHe⁺ + XHe⁺⁺ + Xre1 + Xre2
# baryon H⁺ + e⁻ recombination
αH ~ αHfit(Tb)
βH ~ αH / λe^3 * exp(-β*EH∞2s)
KHfitfactor ~ 1 + KHfitfactorfunc(a, -0.14, 7.28, 0.18) + KHfitfactorfunc(a, 0.079, 6.73, 0.33)
KH ~ KHfitfactor/8π * λH2s1s^3 / Hrec
CH ~ smoothifelse(XH⁺ - 0.99, (1 + KH*ΛH*nH*(1-XH⁺)) / (1 + KH*(ΛH+βH)*nH*(1-XH⁺)), 1; k = 1e3)
D(XH⁺) ~ -a/(H100*h) * CH * (αH*XH⁺*ne - βH*(1-XH⁺)*exp(-β*EH2s1s))
# baryon He⁺ + e⁻ singlet recombination
αHe ~ αHefit(Tb; q=10^(-16.744), p=0.711)
βHe ~ 4 * αHe / λe^3 * exp(-β*EHe∞2s)
KHe ~ 1 / (invKHe0 + invKHe1 + invKHe2)
invKHe0 ~ 8π*Hrec / λHe2p1s^3
τHe ~ 3*A2ps*nHe*(1-XHe⁺+ϵ) / invKHe0
invKHe1 ~ -exp(-τHe) * invKHe0
γ2ps ~ γHe(A = A2ps, σ = 1.436289e-22, f = fHe2p1s)
invKHe2 ~ A2ps/(1+0.36*γ2ps^0.86)*3*nHe*(1-XHe⁺)
CHe ~ smoothifelse(XHe⁺ - 0.99, (exp(-β*EHe2p2s) + KHe*ΛHe*nHe*(1-XHe⁺)) / (exp(-β*EHe2p2s) + KHe*(ΛHe+βHe)*nHe*(1-XHe⁺)), 1; k = 1e3)
DXHe⁺ ~ -a/(H100*h) * CHe * (αHe*XHe⁺*ne - βHe*(1-XHe⁺)*exp(-β*EHe2s1s))
# baryon He⁺ + e⁻ triplet recombination
αHet ~ αHefit(Tb; q=10^(-16.306), p=0.761)
βHet ~ 4/3 * αHet / λe^3 * exp(-β*EHet∞2s)
τHet ~ A2pt*nHe*(1-XHe⁺+ϵ)*3 * λHet2p1s^3/(8π*Hrec)
pHet ~ (1 - exp(-τHet)) / τHet
γ2pt ~ γHe(A = A2pt, σ = 1.484872e-22, f = fHet2p1s)
CHetnum ~ A2pt*(pHet+1/(1+0.66*γ2pt^0.9)/3)*exp(-β*EHet2p2s)
CHet ~ (ϵ + CHetnum) / (ϵ + CHetnum + βHet)
DXHet⁺ ~ -a/(H100*h) * CHet * (αHet*XHe⁺*ne - βHet*(1-XHe⁺)*3*exp(-β*EHet2s1s))
# baryon He⁺ + e⁻ total recombination
D(XHe⁺) ~ DXHe⁺ + DXHet⁺
# baryon He⁺⁺ + e⁻ recombination
RHe⁺ ~ 1 * exp(-β*EHe⁺∞1s) / (nH * λe^3)
XHe⁺⁺ ~ 2*RHe⁺*fHe / (1+fHe+RHe⁺) / (1 + √(1 + 4*RHe⁺*fHe/(1+fHe+RHe⁺)^2))
# reionization
Xre1 ~ smoothifelse((1+zre1)^nre1 - (1+z)^nre1, 0, 1 + fHe; k = 1/(nre1*(1+zre1)^(nre1-1)*Δzre1))
Xre2 ~ smoothifelse((1+zre2)^nre2 - (1+z)^nre2, 0, 0 + fHe; k = 1/(nre2*(1+zre2)^(nre2-1)*Δzre2))
# baryons
ρb ~ 3/(8*Num(π)) * Ωb0 / a^3
D(δb) ~ -θb - 3*ℋ*csb2*δb + 3*D(Φ)
D(θb) ~ -ℋ*θb + k^2*csb2*δb + k^2*Ψ - 4//3*κ̇*ργ/ρb*(θγ-θb)
# photons
Tγ ~ Tγ0 / a
Ωγ0 ~ π^2/15 * (kB*Tγ0)^4 / (ħ^3*c^5) * 8π*GN / (3*(H100*h)^2)
ργ ~ 3/(8*Num(π)) * Ωγ0 / a^4
wγ ~ 1//3
Pγ ~ wγ * ργ
D(Fγ0) ~ -k*Fγ[1] + 4*D(Φ)
D(Fγ[1]) ~ k/3*(Fγ0-2*Fγ[2]+4*Ψ) - 4//3 * κ̇/k * (θb - θγ)
[D(Fγ[l]) ~ k/(2l+1) * (l*Fγ[l-1] - (l+1)*Fγ[l+1]) + κ̇ * (Fγ[l] - δkron(l,2)//10*Πγ) for l in 2:lγmax-1]...
D(Fγ[lγmax]) ~ k*Fγ[lγmax-1] - (lγmax+1) / τ * Fγ[lγmax] + κ̇ * Fγ[lγmax]
δγ ~ Fγ0
θγ ~ 3*k*Fγ[1]/4
σγ ~ Fγ[2]/2
Πγ ~ Fγ[2] + Gγ0 + Gγ[2]
D(Gγ0) ~ k * (-Gγ[1]) + κ̇ * (Gγ0 - Πγ/2)
D(Gγ[1]) ~ k/(2*1+1) * (1*Gγ0 - 2*Gγ[2]) + κ̇ * Gγ[1]
[D(Gγ[l]) ~ k/(2l+1) * (l*Gγ[l-1] - (l+1)*Gγ[l+1]) + κ̇ * (Gγ[l] - δkron(l,2)//10*Πγ) for l in 2:lγmax-1]...
D(Gγ[lγmax]) ~ k*Gγ[lγmax-1] - (lγmax+1) / τ * Gγ[lγmax] + κ̇ * Gγ[lγmax]
# cold dark matter
ρc ~ 3/(8*Num(π)) * Ωc0 / a^3
D(δc) ~ -(θc-3*D(Φ))
D(θc) ~ -ℋ*θc + k^2*Ψ
# massless neutrinos
ρν ~ 3/(8*Num(π)) * Ων0 / a^4
wν ~ 1//3
Pν ~ wν * ρν
Tν ~ Tν0 / a
D(Fν0) ~ -k*Fν[1] + 4*D(Φ)
D(Fν[1]) ~ k/3*(Fν0-2*Fν[2]+4*Ψ)
[D(Fν[l]) ~ k/(2*l+1) * (l*Fν[l-1] - (l+1)*Fν[l+1]) for l in 2:lνmax-1]...
D(Fν[lνmax]) ~ k*Fν[lνmax-1] - (lνmax+1) / τ * Fν[lνmax]
δν ~ Fν0
θν ~ 3*k*Fν[1]/4
σν ~ Fν[2]/2
# massive neutrinos
mh ~ mh_eV * eV/c^2
yh0 ~ mh*c^2 / (kB*Th0)
Iρh0 ~ ∫dx_x²_f₀(@. √(x^2 + yh0^2))
Ωh0 ~ Nh * 8*Num(π)/3 * 2/(2*Num(π)^2) * (kB*Th0)^4 / (ħ*c)^3 * Iρh0 / ((H100*h*c)^2/GN)
Th ~ Th0 / a
yh ~ yh0 * a
Iρh ~ ∫dx_x²_f₀(Eh)
IPh ~ ∫dx_x²_f₀(x.^2 ./ Eh)
ρh ~ 2Nh/(2*π^2) * (kB*Th)^4 / (ħ*c)^3 * Iρh / ((H100*h*c)^2/GN)
Ph ~ 2Nh/(6*π^2) * (kB*Th)^4 / (ħ*c)^3 * IPh / ((H100*h*c)^2/GN)
wh ~ Ph / ρh
Iδρh ~ ∫dx_x²_f₀(Eh .* ψh0)
δh ~ Iδρh / Iρh
uh ~ ∫dx_x²_f₀(x .* ψh[:,1]) / (Iρh + IPh/3)
θh ~ k * uh
σh ~ (2//3) * ∫dx_x²_f₀(x.^2 ./ Eh .* ψh[:,2]) / (Iρh + IPh/3)
csh2 ~ ∫dx_x²_f₀(x.^2 ./ Eh .* ψh0) / Iδρh
[Eh[i] ~ √(x[i]^2 + yh^2) for i in 1:nx]...
[D(ψh0[i]) ~ -k * x[i]/Eh[i] * ψh[i,1] - D(Φ) * dlnf₀_dlnx(x[i]) for i in 1:nx]...
[D(ψh[i,1]) ~ k/3 * x[i]/Eh[i] * (ψh0[i] - 2*ψh[i,2]) - k/3 * Eh[i]/x[i] * Ψ * dlnf₀_dlnx(x[i]) for i in 1:nx]...
[D(ψh[i,l]) ~ k/(2*l+1) * x[i]/Eh[i] * (l*ψh[i,l-1] - (l+1) * ψh[i,l+1]) for i in 1:nx, l in 2:lhmax-1]...
[D(ψh[i,lhmax]) ~ k/(2*lhmax+1) * x[i]/Eh[i] * (lhmax*ψh[i,lhmax-1] - (lhmax+1) * ((2*lhmax+1) * Eh[i]/x[i] * ψh[i,lhmax] / (k*τ) - ψh[i,lhmax-1])) for i in 1:nx]...
# cosmological constant
ρΛ ~ 3/(8*Num(π)) * ΩΛ0
wΛ ~ -1
PΛ ~ wΛ * ρΛ
]
initialization_eqs = [
# metric/gravity
Ψ ~ 20C / (15 + 4fν)
# baryons
δb ~ -3//2 * Ψ
θb ~ 1//2 * (k^2*τ) * Ψ
# photons
Fγ0 ~ -2*Ψ
Fγ[1] ~ 2//3 * k*τ*Ψ
Fγ[2] ~ -8//15 * k/κ̇ * Fγ[1]
[Fγ[l] ~ -l//(2*l+1) * k/κ̇ * Fγ[l-1] for l in 3:lγmax]...
Gγ0 ~ 5//16 * Fγ[2]
Gγ[1] ~ -1//16 * k/κ̇ * Fγ[2]
Gγ[2] ~ 1//16 * Fγ[2]
[Gγ[l] ~ -l//(2l+1) * k/κ̇ * Gγ[l-1] for l in 3:lγmax]...
# cold dark matter
δc ~ -3//2 * Ψ
θc ~ 1//2 * (k^2*τ) * Ψ
# massless neutrinos
δν ~ -2 * Ψ
θν ~ 1//2 * (k^2*τ) * Ψ
σν ~ 1//15 * (k*τ)^2 * Ψ
[Fν[l] ~ +l//(2*l+1) * k*τ * Fν[l-1] for l in 3:lνmax]...
# massive neutrinos
[ψh0[i] ~ -1//4 * (-2*Ψ) * dlnf₀_dlnx(x[i]) for i in 1:nx]...
[ψh[i,1] ~ -1//3 * Eh[i]/x[i] * (1/2*k*τ*Ψ) * dlnf₀_dlnx(x[i]) for i in 1:nx]...
[ψh[i,2] ~ -1//2 * (1//15*(k*τ)^2*Ψ) * dlnf₀_dlnx(x[i]) for i in 1:nx]...
[ψh[i,l] ~ 0 for i in 1:nx, l in 3:lhmax]...
]
defaults = [
D(a) => a / τ
τ0 => NaN
fν => (ρν + ρh) / (ρν + ρh + ργ)
C => 1//2
XHe⁺ => 1.0
XH⁺ => 1.0
κ => 0.0
ΔT => 0.0
zre1 => 7.6711
Δzre1 => 0.5
nre1 => 3/2
zre2 => 3.5
Δzre2 => 0.5
nre2 => 1
Tν0 => (4/11)^(1/3) * Tγ0
Ων0 => Neff * 7/8 * (4/11)^(4/3) * Ωγ0
Nh => 3
Th0 => (4/11)^(1/3) * Tγ0
ΩΛ0 => 1 - Ωγ0 - Ωc0 - Ωb0
]
guesses = [
a => τ
]
M = System(eqs, τ, vars, pars; initialization_eqs, defaults, guesses, name = :ΛCDM)
\[ \begin{align*} z\left( \tau \right) &= -1 + \frac{1}{a\left( \tau \right)} \\ \mathscr{H}\left( \tau \right) &= \frac{\frac{\mathrm{d} a\left( \tau \right)}{\mathrm{d}\tau}}{a\left( \tau \right)} \\ H\left( \tau \right) &= \frac{\mathscr{H}\left( \tau \right)}{a\left( \tau \right)} \\ \frac{\mathrm{d} a\left( \tau \right)}{\mathrm{d}\tau} &= \left( a\left( \tau \right) \right)^{2} \sqrt{\frac{8}{3} \rho\left( \tau \right) \pi} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi\left( \tau, k \right) &= \frac{ - \frac{4}{3} \left( a\left( \tau \right) \right)^{2} \mathtt{\delta\rho}\left( \tau, k \right) \pi}{\mathscr{H}\left( \tau \right)} + \frac{ - k^{2} \Phi\left( \tau, k \right)}{3 \mathscr{H}\left( \tau \right)} - \mathscr{H}\left( \tau \right) \Psi\left( \tau, k \right) \\ k^{2} \left( \Phi\left( \tau, k \right) - \Psi\left( \tau, k \right) \right) &= 12 \left( a\left( \tau \right) \right)^{2} \Pi\left( \tau, k \right) \pi \\ \rho\left( \tau \right) &= \mathtt{{\rho}b}\left( \tau \right) + \mathtt{{\rho}c}\left( \tau \right) + \mathtt{\rho\gamma}\left( \tau \right) + \mathtt{\rho\Lambda}\left( \tau \right) + \mathtt{{\rho}h}\left( \tau \right) + \mathtt{\rho\nu}\left( \tau \right) \\ P\left( \tau \right) &= \mathtt{P\Lambda}\left( \tau \right) + \mathtt{P\nu}\left( \tau \right) + \mathtt{P\gamma}\left( \tau \right) + \mathtt{Ph}\left( \tau \right) \\ \mathtt{\delta\rho}\left( \tau, k \right) &= \mathtt{{\rho}b}\left( \tau \right) \mathtt{{\delta}b}\left( \tau, k \right) + \mathtt{{\rho}c}\left( \tau \right) \mathtt{{\delta}c}\left( \tau, k \right) + \mathtt{\rho\gamma}\left( \tau \right) \mathtt{\delta\gamma}\left( \tau, k \right) + \mathtt{{\rho}h}\left( \tau \right) \mathtt{{\delta}h}\left( \tau, k \right) + \mathtt{\rho\nu}\left( \tau \right) \mathtt{\delta\nu}\left( \tau, k \right) \\ \Pi\left( \tau, k \right) &= \mathtt{\rho\gamma}\left( \tau \right) \mathtt{\sigma\gamma}\left( \tau, k \right) \left( 1 + \mathtt{w\gamma}\left( \tau \right) \right) + \left( 1 + \mathtt{wh}\left( \tau \right) \right) \mathtt{{\sigma}h}\left( \tau, k \right) \mathtt{{\rho}h}\left( \tau \right) + \left( 1 + \mathtt{w\nu}\left( \tau \right) \right) \mathtt{\rho\nu}\left( \tau \right) \mathtt{\sigma\nu}\left( \tau, k \right) \\ \beta\left( \tau \right) &= \frac{1}{1.3806 \cdot 10^{-23} \mathtt{Tb}\left( \tau \right)} \\ \mathtt{{\lambda}e}\left( \tau \right) &= \frac{6.6261 \cdot 10^{-34}}{\sqrt{\frac{5.7236 \cdot 10^{-30}}{\beta\left( \tau \right)}}} \\ \mathtt{Hrec}\left( \tau \right) &= 3.2408 \cdot 10^{-18} h H\left( \tau \right) \\ \mathtt{fHe} &= \frac{\mathtt{YHe}}{3.9708 \left( 1 - \mathtt{YHe} \right)} \\ \frac{\mathrm{d} \kappa\left( \tau \right)}{\mathrm{d}\tau} &= \frac{ - 1.9944 \cdot 10^{-20} a\left( \tau \right) \mathtt{ne}\left( \tau \right)}{3.2408 \cdot 10^{-18} h} \\ \mathtt{\dot{\kappa}}\left( \tau \right) &= \frac{\mathrm{d} \kappa\left( \tau \right)}{\mathrm{d}\tau} \\ \mathtt{csb2}\left( \tau \right) &= \frac{1.3806 \cdot 10^{-23} \left( \mathtt{Tb}\left( \tau \right) + \frac{ - \frac{\mathrm{d} \mathtt{Tb}\left( \tau \right)}{\mathrm{d}\tau}}{3 \mathscr{H}\left( \tau \right)} \right)}{\mathtt{{\mu}c^2}\left( \tau \right)} \\ \mathtt{{\mu}c^2}\left( \tau \right) &= \frac{1.5044 \cdot 10^{-10}}{1 - 0.74816 \mathtt{YHe} + \left( 1 - \mathtt{YHe} \right) \mathtt{Xe}\left( \tau \right)} \\ \mathtt{DTb}\left( \tau \right) &= \frac{ - 0.00015165 \left( \mathtt{T\gamma}\left( \tau \right) \right)^{4} a\left( \tau \right) \mathtt{{\Delta}T}\left( \tau \right) \mathtt{Xe}\left( \tau \right)}{\left( 1 + \mathtt{fHe} + \mathtt{Xe}\left( \tau \right) \right) h} - 2 \mathtt{Tb}\left( \tau \right) \mathscr{H}\left( \tau \right) \\ \mathtt{DT\gamma}\left( \tau \right) &= \frac{\mathrm{d} \mathtt{T\gamma}\left( \tau \right)}{\mathrm{d}\tau} \\ \frac{\mathrm{d} \mathtt{{\Delta}T}\left( \tau \right)}{\mathrm{d}\tau} &= \mathtt{DTb}\left( \tau \right) - \mathtt{DT\gamma}\left( \tau \right) \\ \mathtt{Tb}\left( \tau \right) &= \mathtt{{\Delta}T}\left( \tau \right) + \mathtt{T\gamma}\left( \tau \right) \\ \mathtt{nH}\left( \tau \right) &= 94.012 h^{2} \left( 1 - \mathtt{YHe} \right) \mathtt{{\rho}b}\left( \tau \right) \\ \mathtt{nHe}\left( \tau \right) &= \mathtt{fHe} \mathtt{nH}\left( \tau \right) \\ \mathtt{ne}\left( \tau \right) &= \mathtt{nH}\left( \tau \right) \mathtt{Xe}\left( \tau \right) \\ \mathtt{Xe}\left( \tau \right) &= \mathtt{Xre2}\left( \tau \right) + \mathtt{XHe^{+ +}}\left( \tau \right) + \mathtt{Xre1}\left( \tau \right) + \mathtt{XH^+}\left( \tau \right) + \mathtt{fHe} \mathtt{XHe^+}\left( \tau \right) \\ \mathtt{{\alpha}H}\left( \tau \right) &= \frac{4.8476 \cdot 10^{-19}}{0.0034166 \left( \mathtt{Tb}\left( \tau \right) \right)^{0.6166} \left( 1 + 0.0050847 \left( \mathtt{Tb}\left( \tau \right) \right)^{0.53} \right)} \\ \mathtt{{\beta}H}\left( \tau \right) &= \frac{\mathtt{{\alpha}H}\left( \tau \right) e^{ - 5.4468 \cdot 10^{-19} \beta\left( \tau \right)}}{\left( \mathtt{{\lambda}e}\left( \tau \right) \right)^{3}} \\ \mathtt{KHfitfactor}\left( \tau \right) &= 1 + 0.079 e^{ - 9.1827 \left( 6.73 + \log\left( a\left( \tau \right) \right) \right)^{2}} - 0.14 e^{ - 30.864 \left( 7.28 + \log\left( a\left( \tau \right) \right) \right)^{2}} \\ \mathtt{KH}\left( \tau \right) &= \frac{7.1484 \cdot 10^{-23} \mathtt{KHfitfactor}\left( \tau \right)}{\mathtt{Hrec}\left( \tau \right)} \\ \mathtt{CH}\left( \tau \right) &= 0.5 \left( 1 + \frac{1 + 8.2246 \mathtt{nH}\left( \tau \right) \left( 1 - \mathtt{XH^+}\left( \tau \right) \right) \mathtt{KH}\left( \tau \right)}{1 + \mathtt{nH}\left( \tau \right) \left( 1 - \mathtt{XH^+}\left( \tau \right) \right) \mathtt{KH}\left( \tau \right) \left( 8.2246 + \mathtt{{\beta}H}\left( \tau \right) \right)} + \tanh\left( 1000 \left( -0.99 + \mathtt{XH^+}\left( \tau \right) \right) \right) \left( 1 + \frac{-1 - 8.2246 \mathtt{nH}\left( \tau \right) \left( 1 - \mathtt{XH^+}\left( \tau \right) \right) \mathtt{KH}\left( \tau \right)}{1 + \mathtt{nH}\left( \tau \right) \left( 1 - \mathtt{XH^+}\left( \tau \right) \right) \mathtt{KH}\left( \tau \right) \left( 8.2246 + \mathtt{{\beta}H}\left( \tau \right) \right)} \right) \right) \\ \frac{\mathrm{d} \mathtt{XH^+}\left( \tau \right)}{\mathrm{d}\tau} &= \frac{ - a\left( \tau \right) \left( - e^{ - 1.634 \cdot 10^{-18} \beta\left( \tau \right)} \left( 1 - \mathtt{XH^+}\left( \tau \right) \right) \mathtt{{\beta}H}\left( \tau \right) + \mathtt{ne}\left( \tau \right) \mathtt{{\alpha}H}\left( \tau \right) \mathtt{XH^+}\left( \tau \right) \right) \mathtt{CH}\left( \tau \right)}{3.2408 \cdot 10^{-18} h} \\ \mathtt{{\alpha}He}\left( \tau \right) &= \frac{1.803 \cdot 10^{-17}}{\left( 1 + \sqrt{7.6913 \cdot 10^{-6} \mathtt{Tb}\left( \tau \right)} \right)^{1.711} \left( 1 + \sqrt{0.33333 \mathtt{Tb}\left( \tau \right)} \right)^{0.289} \sqrt{0.33333 \mathtt{Tb}\left( \tau \right)}} \\ \mathtt{{\beta}He}\left( \tau \right) &= \frac{4 e^{ - 6.3633 \cdot 10^{-19} \beta\left( \tau \right)} \mathtt{{\alpha}He}\left( \tau \right)}{\left( \mathtt{{\lambda}e}\left( \tau \right) \right)^{3}} \\ \mathtt{KHe}\left( \tau \right) &= \frac{1}{\mathtt{invKHe1}\left( \tau \right) + \mathtt{invKHe0}\left( \tau \right) + \mathtt{invKHe2}\left( \tau \right)} \\ \mathtt{invKHe0}\left( \tau \right) &= 1.2597 \cdot 10^{23} \mathtt{Hrec}\left( \tau \right) \\ \mathtt{{\tau}He}\left( \tau \right) &= \frac{5.3949 \cdot 10^{9} \mathtt{nHe}\left( \tau \right) \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right)}{\mathtt{invKHe0}\left( \tau \right)} \\ \mathtt{invKHe1}\left( \tau \right) &= - e^{ - \mathtt{{\tau}He}\left( \tau \right)} \mathtt{invKHe0}\left( \tau \right) \\ \mathtt{{\gamma}2ps}\left( \tau \right) &= \frac{4.8487 \cdot 10^{26} \mathtt{fHe} \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right)}{4.8748 \cdot 10^{26} \sqrt{\frac{6.2832}{5.9736 \cdot 10^{-10} \beta\left( \tau \right)}} \left( 1 - \mathtt{XH^+}\left( \tau \right) \right)} \\ \mathtt{invKHe2}\left( \tau \right) &= \frac{5.3949 \cdot 10^{9} \mathtt{nHe}\left( \tau \right) \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right)}{1 + 0.36 \left( \mathtt{{\gamma}2ps}\left( \tau \right) \right)^{0.86}} \\ \mathtt{CHe}\left( \tau \right) &= 0.5 \left( 1 + \frac{e^{ - 9.6491 \cdot 10^{-20} \beta\left( \tau \right)} + 51.3 \mathtt{KHe}\left( \tau \right) \mathtt{nHe}\left( \tau \right) \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right)}{e^{ - 9.6491 \cdot 10^{-20} \beta\left( \tau \right)} + \left( 51.3 + \mathtt{{\beta}He}\left( \tau \right) \right) \mathtt{KHe}\left( \tau \right) \mathtt{nHe}\left( \tau \right) \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right)} + \left( 1 + \frac{ - e^{ - 9.6491 \cdot 10^{-20} \beta\left( \tau \right)} - 51.3 \mathtt{KHe}\left( \tau \right) \mathtt{nHe}\left( \tau \right) \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right)}{e^{ - 9.6491 \cdot 10^{-20} \beta\left( \tau \right)} + \left( 51.3 + \mathtt{{\beta}He}\left( \tau \right) \right) \mathtt{KHe}\left( \tau \right) \mathtt{nHe}\left( \tau \right) \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right)} \right) \tanh\left( 1000 \left( -0.99 + \mathtt{XHe^+}\left( \tau \right) \right) \right) \right) \\ \mathtt{DXHe^+}\left( \tau \right) &= \frac{ - a\left( \tau \right) \left( \mathtt{ne}\left( \tau \right) \mathtt{{\alpha}He}\left( \tau \right) \mathtt{XHe^+}\left( \tau \right) - \mathtt{{\beta}He}\left( \tau \right) e^{ - 3.303 \cdot 10^{-18} \beta\left( \tau \right)} \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right) \right) \mathtt{CHe}\left( \tau \right)}{3.2408 \cdot 10^{-18} h} \\ \mathtt{{\alpha}Het}\left( \tau \right) &= \frac{4.9431 \cdot 10^{-17}}{\left( 1 + \sqrt{7.6913 \cdot 10^{-6} \mathtt{Tb}\left( \tau \right)} \right)^{1.761} \left( 1 + \sqrt{0.33333 \mathtt{Tb}\left( \tau \right)} \right)^{0.239} \sqrt{0.33333 \mathtt{Tb}\left( \tau \right)}} \\ \mathtt{{\beta}Het}\left( \tau \right) &= \frac{1.3333 e^{ - 7.6388 \cdot 10^{-19} \beta\left( \tau \right)} \mathtt{{\alpha}Het}\left( \tau \right)}{\left( \mathtt{{\lambda}e}\left( \tau \right) \right)^{3}} \\ \mathtt{{\tau}Het}\left( \tau \right) &= \frac{1.102 \cdot 10^{-19} \mathtt{nHe}\left( \tau \right) \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right)}{25.133 \mathtt{Hrec}\left( \tau \right)} \\ \mathtt{pHet}\left( \tau \right) &= \frac{1 - e^{ - \mathtt{{\tau}Het}\left( \tau \right)}}{\mathtt{{\tau}Het}\left( \tau \right)} \\ \mathtt{{\gamma}2pt}\left( \tau \right) &= \frac{4.788 \cdot 10^{19} \mathtt{fHe} \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right)}{4.861 \cdot 10^{26} \sqrt{\frac{6.2832}{5.9736 \cdot 10^{-10} \beta\left( \tau \right)}} \left( 1 - \mathtt{XH^+}\left( \tau \right) \right)} \\ \mathtt{CHetnum}\left( \tau \right) &= 177.58 e^{ - 1.8337 \cdot 10^{-19} \beta\left( \tau \right)} \left( \frac{\frac{1}{3}}{1 + 0.66 \left( \mathtt{{\gamma}2pt}\left( \tau \right) \right)^{0.9}} + \mathtt{pHet}\left( \tau \right) \right) \\ \mathtt{CHet}\left( \tau \right) &= \frac{1 \cdot 10^{-9} + \mathtt{CHetnum}\left( \tau \right)}{1 \cdot 10^{-9} + \mathtt{{\beta}Het}\left( \tau \right) + \mathtt{CHetnum}\left( \tau \right)} \\ \mathtt{DXHet^+}\left( \tau \right) &= \frac{ - a\left( \tau \right) \left( \mathtt{ne}\left( \tau \right) \mathtt{XHe^+}\left( \tau \right) \mathtt{{\alpha}Het}\left( \tau \right) - 3 e^{ - 3.1755 \cdot 10^{-18} \beta\left( \tau \right)} \mathtt{{\beta}Het}\left( \tau \right) \left( 1 - \mathtt{XHe^+}\left( \tau \right) \right) \right) \mathtt{CHet}\left( \tau \right)}{3.2408 \cdot 10^{-18} h} \\ \frac{\mathrm{d} \mathtt{XHe^+}\left( \tau \right)}{\mathrm{d}\tau} &= \mathtt{DXHe^+}\left( \tau \right) + \mathtt{DXHet^+}\left( \tau \right) \\ \mathtt{RHe^+}\left( \tau \right) &= \frac{e^{ - 8.7187 \cdot 10^{-18} \beta\left( \tau \right)}}{\left( \mathtt{{\lambda}e}\left( \tau \right) \right)^{3} \mathtt{nH}\left( \tau \right)} \\ \mathtt{XHe^{+ +}}\left( \tau \right) &= \frac{2 \mathtt{fHe} \mathtt{RHe^+}\left( \tau \right)}{\left( 1 + \mathtt{fHe} + \mathtt{RHe^+}\left( \tau \right) \right) \left( 1 + \sqrt{1 + \frac{4 \mathtt{fHe} \mathtt{RHe^+}\left( \tau \right)}{\left( 1 + \mathtt{fHe} + \mathtt{RHe^+}\left( \tau \right) \right)^{2}}} \right)} \\ \mathtt{Xre1}\left( \tau \right) &= 0.5 \left( 1 + \mathtt{fHe} + \left( 1 + \mathtt{fHe} \right) \tanh\left( \frac{ - \left( 1 + z\left( \tau \right) \right)^{\mathtt{nre1}} + \left( 1 + \mathtt{zre1} \right)^{\mathtt{nre1}}}{\left( 1 + \mathtt{zre1} \right)^{-1 + \mathtt{nre1}} \mathtt{nre1} \mathtt{{\Delta}zre1}} \right) \right) \\ \mathtt{Xre2}\left( \tau \right) &= 0.5 \left( \mathtt{fHe} + \mathtt{fHe} \tanh\left( \frac{\left( 1 + \mathtt{zre2} \right)^{\mathtt{nre2}} - \left( 1 + z\left( \tau \right) \right)^{\mathtt{nre2}}}{\left( 1 + \mathtt{zre2} \right)^{-1 + \mathtt{nre2}} \mathtt{nre2} \mathtt{{\Delta}zre2}} \right) \right) \\ \mathtt{{\rho}b}\left( \tau \right) &= \frac{3 \mathtt{{\Omega}b0}}{8 \left( a\left( \tau \right) \right)^{3} \pi} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\delta}b}\left( \tau, k \right) &= - \mathtt{{\theta}b}\left( \tau, k \right) + 3 \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi\left( \tau, k \right) - 3 \mathscr{H}\left( \tau \right) \mathtt{csb2}\left( \tau \right) \mathtt{{\delta}b}\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\theta}b}\left( \tau, k \right) &= \frac{ - \frac{4}{3} \mathtt{\rho\gamma}\left( \tau \right) \mathtt{\dot{\kappa}}\left( \tau \right) \left( \mathtt{\theta\gamma}\left( \tau, k \right) - \mathtt{{\theta}b}\left( \tau, k \right) \right)}{\mathtt{{\rho}b}\left( \tau \right)} - \mathscr{H}\left( \tau \right) \mathtt{{\theta}b}\left( \tau, k \right) + k^{2} \Psi\left( \tau, k \right) + k^{2} \mathtt{csb2}\left( \tau \right) \mathtt{{\delta}b}\left( \tau, k \right) \\ \mathtt{T\gamma}\left( \tau \right) &= \frac{\mathtt{T{\gamma}0}}{a\left( \tau \right)} \\ \mathtt{\Omega{\gamma}0} &= \frac{1.4121 \cdot 10^{-41} \mathtt{T{\gamma}0}^{4}}{3.1508 \cdot 10^{-35} h^{2}} \\ \mathtt{\rho\gamma}\left( \tau \right) &= \frac{3 \mathtt{\Omega{\gamma}0}}{8 \left( a\left( \tau \right) \right)^{4} \pi} \\ \mathtt{w\gamma}\left( \tau \right) &= \frac{1}{3} \\ \mathtt{P\gamma}\left( \tau \right) &= \mathtt{\rho\gamma}\left( \tau \right) \mathtt{w\gamma}\left( \tau \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F{\gamma}0}\left( \tau, k \right) &= 4 \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi\left( \tau, k \right) - \mathtt{F\gamma}\_{1}\left( \tau, k \right) k \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\gamma}\_{1}\left( \tau, k \right) &= \frac{ - \frac{4}{3} \mathtt{\dot{\kappa}}\left( \tau \right) \left( - \mathtt{\theta\gamma}\left( \tau, k \right) + \mathtt{{\theta}b}\left( \tau, k \right) \right)}{k} + \frac{1}{3} \left( - 2 \mathtt{F\gamma}\_{2}\left( \tau, k \right) + \mathtt{F{\gamma}0}\left( \tau, k \right) + 4 \Psi\left( \tau, k \right) \right) k \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\gamma}\_{2}\left( \tau, k \right) &= \frac{1}{5} \left( 2 \mathtt{F\gamma}\_{1}\left( \tau, k \right) - 3 \mathtt{F\gamma}\_{3}\left( \tau, k \right) \right) k + \left( \mathtt{F\gamma}\_{2}\left( \tau, k \right) - \frac{1}{10} \mathtt{\Pi\gamma}\left( \tau, k \right) \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\gamma}\_{3}\left( \tau, k \right) &= \frac{1}{7} \left( 3 \mathtt{F\gamma}\_{2}\left( \tau, k \right) - 4 \mathtt{F\gamma}\_{4}\left( \tau, k \right) \right) k + \mathtt{F\gamma}\_{3}\left( \tau, k \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\gamma}\_{4}\left( \tau, k \right) &= \frac{1}{9} \left( 4 \mathtt{F\gamma}\_{3}\left( \tau, k \right) - 5 \mathtt{F\gamma}\_{5}\left( \tau, k \right) \right) k + \mathtt{F\gamma}\_{4}\left( \tau, k \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\gamma}\_{5}\left( \tau, k \right) &= \frac{1}{11} \left( 5 \mathtt{F\gamma}\_{4}\left( \tau, k \right) - 6 \mathtt{F\gamma}\_{6}\left( \tau, k \right) \right) k + \mathtt{F\gamma}\_{5}\left( \tau, k \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\gamma}\_{6}\left( \tau, k \right) &= \frac{ - 7 \mathtt{F\gamma}\_{6}\left( \tau, k \right)}{\tau} + \mathtt{F\gamma}\_{5}\left( \tau, k \right) k + \mathtt{F\gamma}\_{6}\left( \tau, k \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \mathtt{\delta\gamma}\left( \tau, k \right) &= \mathtt{F{\gamma}0}\left( \tau, k \right) \\ \mathtt{\theta\gamma}\left( \tau, k \right) &= \frac{3}{4} \mathtt{F\gamma}\_{1}\left( \tau, k \right) k \\ \mathtt{\sigma\gamma}\left( \tau, k \right) &= \frac{1}{2} \mathtt{F\gamma}\_{2}\left( \tau, k \right) \\ \mathtt{\Pi\gamma}\left( \tau, k \right) &= \mathtt{F\gamma}\_{2}\left( \tau, k \right) + \mathtt{G\gamma}\_{2}\left( \tau, k \right) + \mathtt{G{\gamma}0}\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{G{\gamma}0}\left( \tau, k \right) &= - \mathtt{G\gamma}\_{1}\left( \tau, k \right) k + \mathtt{\dot{\kappa}}\left( \tau \right) \left( - \frac{1}{2} \mathtt{\Pi\gamma}\left( \tau, k \right) + \mathtt{G{\gamma}0}\left( \tau, k \right) \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{G\gamma}\_{1}\left( \tau, k \right) &= \mathtt{G\gamma}\_{1}\left( \tau, k \right) \mathtt{\dot{\kappa}}\left( \tau \right) + \frac{1}{3} \left( - 2 \mathtt{G\gamma}\_{2}\left( \tau, k \right) + \mathtt{G{\gamma}0}\left( \tau, k \right) \right) k \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{G\gamma}\_{2}\left( \tau, k \right) &= \frac{1}{5} \left( 2 \mathtt{G\gamma}\_{1}\left( \tau, k \right) - 3 \mathtt{G\gamma}\_{3}\left( \tau, k \right) \right) k + \left( \mathtt{G\gamma}\_{2}\left( \tau, k \right) - \frac{1}{10} \mathtt{\Pi\gamma}\left( \tau, k \right) \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{G\gamma}\_{3}\left( \tau, k \right) &= \frac{1}{7} \left( 3 \mathtt{G\gamma}\_{2}\left( \tau, k \right) - 4 \mathtt{G\gamma}\_{4}\left( \tau, k \right) \right) k + \mathtt{G\gamma}\_{3}\left( \tau, k \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{G\gamma}\_{4}\left( \tau, k \right) &= \frac{1}{9} \left( 4 \mathtt{G\gamma}\_{3}\left( \tau, k \right) - 5 \mathtt{G\gamma}\_{5}\left( \tau, k \right) \right) k + \mathtt{G\gamma}\_{4}\left( \tau, k \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{G\gamma}\_{5}\left( \tau, k \right) &= \frac{1}{11} \left( 5 \mathtt{G\gamma}\_{4}\left( \tau, k \right) - 6 \mathtt{G\gamma}\_{6}\left( \tau, k \right) \right) k + \mathtt{G\gamma}\_{5}\left( \tau, k \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{G\gamma}\_{6}\left( \tau, k \right) &= \frac{ - 7 \mathtt{G\gamma}\_{6}\left( \tau, k \right)}{\tau} + \mathtt{G\gamma}\_{5}\left( \tau, k \right) k + \mathtt{G\gamma}\_{6}\left( \tau, k \right) \mathtt{\dot{\kappa}}\left( \tau \right) \\ \mathtt{{\rho}c}\left( \tau \right) &= \frac{3 \mathtt{{\Omega}c0}}{8 \left( a\left( \tau \right) \right)^{3} \pi} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\delta}c}\left( \tau, k \right) &= - \mathtt{{\theta}c}\left( \tau, k \right) + 3 \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\theta}c}\left( \tau, k \right) &= - \mathscr{H}\left( \tau \right) \mathtt{{\theta}c}\left( \tau, k \right) + k^{2} \Psi\left( \tau, k \right) \\ \mathtt{\rho\nu}\left( \tau \right) &= \frac{3 \mathtt{\Omega{\nu}0}}{8 \left( a\left( \tau \right) \right)^{4} \pi} \\ \mathtt{w\nu}\left( \tau \right) &= \frac{1}{3} \\ \mathtt{P\nu}\left( \tau \right) &= \mathtt{w\nu}\left( \tau \right) \mathtt{\rho\nu}\left( \tau \right) \\ \mathtt{T\nu}\left( \tau \right) &= \frac{\mathtt{T{\nu}0}}{a\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F{\nu}0}\left( \tau, k \right) &= 4 \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi\left( \tau, k \right) - \mathtt{F\nu}\_{1}\left( \tau, k \right) k \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\nu}\_{1}\left( \tau, k \right) &= \frac{1}{3} \left( - 2 \mathtt{F\nu}\_{2}\left( \tau, k \right) + 4 \Psi\left( \tau, k \right) + \mathtt{F{\nu}0}\left( \tau, k \right) \right) k \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\nu}\_{2}\left( \tau, k \right) &= \frac{1}{5} \left( 2 \mathtt{F\nu}\_{1}\left( \tau, k \right) - 3 \mathtt{F\nu}\_{3}\left( \tau, k \right) \right) k \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\nu}\_{3}\left( \tau, k \right) &= \frac{1}{7} \left( 3 \mathtt{F\nu}\_{2}\left( \tau, k \right) - 4 \mathtt{F\nu}\_{4}\left( \tau, k \right) \right) k \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\nu}\_{4}\left( \tau, k \right) &= \frac{1}{9} \left( 4 \mathtt{F\nu}\_{3}\left( \tau, k \right) - 5 \mathtt{F\nu}\_{5}\left( \tau, k \right) \right) k \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\nu}\_{5}\left( \tau, k \right) &= \frac{1}{11} \left( 5 \mathtt{F\nu}\_{4}\left( \tau, k \right) - 6 \mathtt{F\nu}\_{6}\left( \tau, k \right) \right) k \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{F\nu}\_{6}\left( \tau, k \right) &= \frac{ - 7 \mathtt{F\nu}\_{6}\left( \tau, k \right)}{\tau} + \mathtt{F\nu}\_{5}\left( \tau, k \right) k \\ \mathtt{\delta\nu}\left( \tau, k \right) &= \mathtt{F{\nu}0}\left( \tau, k \right) \\ \mathtt{\theta\nu}\left( \tau, k \right) &= \frac{3}{4} \mathtt{F\nu}\_{1}\left( \tau, k \right) k \\ \mathtt{\sigma\nu}\left( \tau, k \right) &= \frac{1}{2} \mathtt{F\nu}\_{2}\left( \tau, k \right) \\ \mathtt{mh} &= 1.7827 \cdot 10^{-36} \mathtt{mh\_eV} \\ \mathtt{yh0} &= \frac{8.9876 \cdot 10^{16} \mathtt{mh}}{1.3806 \cdot 10^{-23} \mathtt{Th0}} \\ \mathtt{I{\rho}h0} &= 0.24384 \sqrt{43.235 + \mathtt{yh0}^{2}} + 0.55272 \sqrt{1.549 + \mathtt{yh0}^{2}} + 0.99943 \sqrt{10.95 + \mathtt{yh0}^{2}} + 0.0070934 \sqrt{139.32 + \mathtt{yh0}^{2}} \\ \mathtt{{\Omega}h0} &= \frac{9.1988 \cdot 10^{-15} \mathtt{Th0}^{4} \mathtt{I{\rho}h0} \mathtt{Nh}}{4.2428 \cdot 10^{-8} h^{2} \pi} \\ \mathtt{Th}\left( \tau \right) &= \frac{\mathtt{Th0}}{a\left( \tau \right)} \\ \mathtt{yh}\left( \tau \right) &= \mathtt{yh0} a\left( \tau \right) \\ \mathtt{I{\rho}h}\left( \tau \right) &= 0.55272 \mathtt{Eh}\_{1}\left( \tau \right) + 0.99943 \mathtt{Eh}\_{2}\left( \tau \right) + 0.24384 \mathtt{Eh}\_{3}\left( \tau \right) + 0.0070934 \mathtt{Eh}\_{4}\left( \tau \right) \\ \mathtt{IPh}\left( \tau \right) &= \frac{0.85619}{\mathtt{Eh}\_{1}\left( \tau \right)} + \frac{10.944}{\mathtt{Eh}\_{2}\left( \tau \right)} + \frac{10.543}{\mathtt{Eh}\_{3}\left( \tau \right)} + \frac{0.98827}{\mathtt{Eh}\_{4}\left( \tau \right)} \\ \mathtt{{\rho}h}\left( \tau \right) &= \frac{1.165 \cdot 10^{-16} \left( \mathtt{Th}\left( \tau \right) \right)^{4} \mathtt{Nh} \mathtt{I{\rho}h}\left( \tau \right)}{1.4143 \cdot 10^{-8} h^{2}} \\ \mathtt{Ph}\left( \tau \right) &= \frac{3.8835 \cdot 10^{-17} \left( \mathtt{Th}\left( \tau \right) \right)^{4} \mathtt{Nh} \mathtt{IPh}\left( \tau \right)}{1.4143 \cdot 10^{-8} h^{2}} \\ \mathtt{wh}\left( \tau \right) &= \frac{\mathtt{Ph}\left( \tau \right)}{\mathtt{{\rho}h}\left( \tau \right)} \\ \mathtt{I\delta{\rho}h}\left( \tau, k \right) &= 0.55272 \mathtt{Eh}\_{1}\left( \tau \right) \mathtt{{\psi}h0}\_{1}\left( \tau, k \right) + 0.99943 \mathtt{Eh}\_{2}\left( \tau \right) \mathtt{{\psi}h0}\_{2}\left( \tau, k \right) + 0.24384 \mathtt{Eh}\_{3}\left( \tau \right) \mathtt{{\psi}h0}\_{3}\left( \tau, k \right) + 0.0070934 \mathtt{Eh}\_{4}\left( \tau \right) \mathtt{{\psi}h0}\_{4}\left( \tau, k \right) \\ \mathtt{{\delta}h}\left( \tau, k \right) &= \frac{\mathtt{I\delta{\rho}h}\left( \tau, k \right)}{\mathtt{I{\rho}h}\left( \tau \right)} \\ \mathtt{uh}\left( \tau, k \right) &= \frac{0.68792 \mathtt{{\psi}h}\_{1,1}\left( \tau, k \right) + 3.3072 \mathtt{{\psi}h}\_{2,1}\left( \tau, k \right) + 1.6033 \mathtt{{\psi}h}\_{3,1}\left( \tau, k \right) + 0.083727 \mathtt{{\psi}h}\_{4,1}\left( \tau, k \right)}{\mathtt{I{\rho}h}\left( \tau \right) + \frac{1}{3} \mathtt{IPh}\left( \tau \right)} \\ \mathtt{{\theta}h}\left( \tau, k \right) &= k \mathtt{uh}\left( \tau, k \right) \\ \mathtt{{\sigma}h}\left( \tau, k \right) &= \frac{\frac{2}{3} \left( \frac{0.85619 \mathtt{{\psi}h}\_{1,2}\left( \tau, k \right)}{\mathtt{Eh}\_{1}\left( \tau \right)} + \frac{0.98827 \mathtt{{\psi}h}\_{4,2}\left( \tau, k \right)}{\mathtt{Eh}\_{4}\left( \tau \right)} + \frac{10.944 \mathtt{{\psi}h}\_{2,2}\left( \tau, k \right)}{\mathtt{Eh}\_{2}\left( \tau \right)} + \frac{10.543 \mathtt{{\psi}h}\_{3,2}\left( \tau, k \right)}{\mathtt{Eh}\_{3}\left( \tau \right)} \right)}{\mathtt{I{\rho}h}\left( \tau \right) + \frac{1}{3} \mathtt{IPh}\left( \tau \right)} \\ \mathtt{csh2}\left( \tau, k \right) &= \frac{\frac{10.944 \mathtt{{\psi}h0}\_{2}\left( \tau, k \right)}{\mathtt{Eh}\_{2}\left( \tau \right)} + \frac{0.85619 \mathtt{{\psi}h0}\_{1}\left( \tau, k \right)}{\mathtt{Eh}\_{1}\left( \tau \right)} + \frac{10.543 \mathtt{{\psi}h0}\_{3}\left( \tau, k \right)}{\mathtt{Eh}\_{3}\left( \tau \right)} + \frac{0.98827 \mathtt{{\psi}h0}\_{4}\left( \tau, k \right)}{\mathtt{Eh}\_{4}\left( \tau \right)}}{\mathtt{I\delta{\rho}h}\left( \tau, k \right)} \\ \mathtt{Eh}\_{1}\left( \tau \right) &= \sqrt{1.549 + \left( \mathtt{yh}\left( \tau \right) \right)^{2}} \\ \mathtt{Eh}\_{2}\left( \tau \right) &= \sqrt{10.95 + \left( \mathtt{yh}\left( \tau \right) \right)^{2}} \\ \mathtt{Eh}\_{3}\left( \tau \right) &= \sqrt{43.235 + \left( \mathtt{yh}\left( \tau \right) \right)^{2}} \\ \mathtt{Eh}\_{4}\left( \tau \right) &= \sqrt{139.32 + \left( \mathtt{yh}\left( \tau \right) \right)^{2}} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h0}\_{1}\left( \tau, k \right) &= \frac{ - 1.2446 k \mathtt{{\psi}h}\_{1,1}\left( \tau, k \right)}{\mathtt{Eh}\_{1}\left( \tau \right)} + 0.96627 \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h0}\_{2}\left( \tau, k \right) &= \frac{ - 3.3091 k \mathtt{{\psi}h}\_{2,1}\left( \tau, k \right)}{\mathtt{Eh}\_{2}\left( \tau \right)} + 3.1924 \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h0}\_{3}\left( \tau, k \right) &= \frac{ - 6.5754 k \mathtt{{\psi}h}\_{3,1}\left( \tau, k \right)}{\mathtt{Eh}\_{3}\left( \tau \right)} + 6.5662 \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h0}\_{4}\left( \tau, k \right) &= 11.803 \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi\left( \tau, k \right) + \frac{ - 11.804 k \mathtt{{\psi}h}\_{4,1}\left( \tau, k \right)}{\mathtt{Eh}\_{4}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{1,1}\left( \tau, k \right) &= \frac{0.41487 k \left( - 2 \mathtt{{\psi}h}\_{1,2}\left( \tau, k \right) + \mathtt{{\psi}h0}\_{1}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{1}\left( \tau \right)} + 0.25879 \mathtt{Eh}\_{1}\left( \tau \right) k \Psi\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{2,1}\left( \tau, k \right) &= \frac{1.103 k \left( - 2 \mathtt{{\psi}h}\_{2,2}\left( \tau, k \right) + \mathtt{{\psi}h0}\_{2}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{2}\left( \tau \right)} + 0.32158 \mathtt{Eh}\_{2}\left( \tau \right) k \Psi\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{3,1}\left( \tau, k \right) &= \frac{2.1918 k \left( - 2 \mathtt{{\psi}h}\_{3,2}\left( \tau, k \right) + \mathtt{{\psi}h0}\_{3}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{3}\left( \tau \right)} + 0.33287 \mathtt{Eh}\_{3}\left( \tau \right) k \Psi\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{4,1}\left( \tau, k \right) &= \frac{3.9345 k \left( - 2 \mathtt{{\psi}h}\_{4,2}\left( \tau, k \right) + \mathtt{{\psi}h0}\_{4}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{4}\left( \tau \right)} + 0.33333 \mathtt{Eh}\_{4}\left( \tau \right) k \Psi\left( \tau, k \right) \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{1,2}\left( \tau, k \right) &= \frac{0.24892 k \left( 2 \mathtt{{\psi}h}\_{1,1}\left( \tau, k \right) - 3 \mathtt{{\psi}h}\_{1,3}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{1}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{2,2}\left( \tau, k \right) &= \frac{0.66182 k \left( 2 \mathtt{{\psi}h}\_{2,1}\left( \tau, k \right) - 3 \mathtt{{\psi}h}\_{2,3}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{2}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{3,2}\left( \tau, k \right) &= \frac{1.3151 k \left( 2 \mathtt{{\psi}h}\_{3,1}\left( \tau, k \right) - 3 \mathtt{{\psi}h}\_{3,3}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{3}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{4,2}\left( \tau, k \right) &= \frac{2.3607 k \left( 2 \mathtt{{\psi}h}\_{4,1}\left( \tau, k \right) - 3 \mathtt{{\psi}h}\_{4,3}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{4}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{1,3}\left( \tau, k \right) &= \frac{0.1778 k \left( 3 \mathtt{{\psi}h}\_{1,2}\left( \tau, k \right) - 4 \mathtt{{\psi}h}\_{1,4}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{1}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{2,3}\left( \tau, k \right) &= \frac{0.47273 k \left( 3 \mathtt{{\psi}h}\_{2,2}\left( \tau, k \right) - 4 \mathtt{{\psi}h}\_{2,4}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{2}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{3,3}\left( \tau, k \right) &= \frac{0.93934 k \left( 3 \mathtt{{\psi}h}\_{3,2}\left( \tau, k \right) - 4 \mathtt{{\psi}h}\_{3,4}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{3}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{4,3}\left( \tau, k \right) &= \frac{1.6862 k \left( 3 \mathtt{{\psi}h}\_{4,2}\left( \tau, k \right) - 4 \mathtt{{\psi}h}\_{4,4}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{4}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{1,4}\left( \tau, k \right) &= \frac{0.13829 k \left( 4 \mathtt{{\psi}h}\_{1,3}\left( \tau, k \right) - 5 \mathtt{{\psi}h}\_{1,5}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{1}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{2,4}\left( \tau, k \right) &= \frac{0.36768 k \left( 4 \mathtt{{\psi}h}\_{2,3}\left( \tau, k \right) - 5 \mathtt{{\psi}h}\_{2,5}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{2}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{3,4}\left( \tau, k \right) &= \frac{0.7306 k \left( 4 \mathtt{{\psi}h}\_{3,3}\left( \tau, k \right) - 5 \mathtt{{\psi}h}\_{3,5}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{3}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{4,4}\left( \tau, k \right) &= \frac{1.3115 k \left( 4 \mathtt{{\psi}h}\_{4,3}\left( \tau, k \right) - 5 \mathtt{{\psi}h}\_{4,5}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{4}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{1,5}\left( \tau, k \right) &= \frac{0.11315 k \left( 5 \mathtt{{\psi}h}\_{1,4}\left( \tau, k \right) - 6 \mathtt{{\psi}h}\_{1,6}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{1}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{2,5}\left( \tau, k \right) &= \frac{0.30083 k \left( 5 \mathtt{{\psi}h}\_{2,4}\left( \tau, k \right) - 6 \mathtt{{\psi}h}\_{2,6}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{2}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{3,5}\left( \tau, k \right) &= \frac{0.59776 k \left( 5 \mathtt{{\psi}h}\_{3,4}\left( \tau, k \right) - 6 \mathtt{{\psi}h}\_{3,6}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{3}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{4,5}\left( \tau, k \right) &= \frac{1.073 k \left( 5 \mathtt{{\psi}h}\_{4,4}\left( \tau, k \right) - 6 \mathtt{{\psi}h}\_{4,6}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{4}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{1,6}\left( \tau, k \right) &= \frac{0.095739 k \left( - 7 \left( \frac{10.445 \mathtt{Eh}\_{1}\left( \tau \right) \mathtt{{\psi}h}\_{1,6}\left( \tau, k \right)}{k \tau} - \mathtt{{\psi}h}\_{1,5}\left( \tau, k \right) \right) + 6 \mathtt{{\psi}h}\_{1,5}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{1}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{2,6}\left( \tau, k \right) &= \frac{0.25455 k \left( - 7 \left( \frac{3.9286 \mathtt{Eh}\_{2}\left( \tau \right) \mathtt{{\psi}h}\_{2,6}\left( \tau, k \right)}{k \tau} - \mathtt{{\psi}h}\_{2,5}\left( \tau, k \right) \right) + 6 \mathtt{{\psi}h}\_{2,5}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{2}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{3,6}\left( \tau, k \right) &= \frac{0.5058 k \left( - 7 \left( \frac{1.9771 \mathtt{Eh}\_{3}\left( \tau \right) \mathtt{{\psi}h}\_{3,6}\left( \tau, k \right)}{k \tau} - \mathtt{{\psi}h}\_{3,5}\left( \tau, k \right) \right) + 6 \mathtt{{\psi}h}\_{3,5}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{3}\left( \tau \right)} \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \mathtt{{\psi}h}\_{4,6}\left( \tau, k \right) &= \frac{0.90796 k \left( - 7 \left( \frac{1.1014 \mathtt{Eh}\_{4}\left( \tau \right) \mathtt{{\psi}h}\_{4,6}\left( \tau, k \right)}{k \tau} - \mathtt{{\psi}h}\_{4,5}\left( \tau, k \right) \right) + 6 \mathtt{{\psi}h}\_{4,5}\left( \tau, k \right) \right)}{\mathtt{Eh}\_{4}\left( \tau \right)} \\ \mathtt{\rho\Lambda}\left( \tau \right) &= \frac{3 \mathtt{\Omega{\Lambda}0}}{8 \pi} \\ \mathtt{w\Lambda}\left( \tau \right) &= -1 \\ \mathtt{P\Lambda}\left( \tau \right) &= \mathtt{\rho\Lambda}\left( \tau \right) \mathtt{w\Lambda}\left( \tau \right) \end{align*} \]
Now set parameter values and compile the numerical problem:
pars = Dict(h => 0.7, Ωc0 => 0.3, Ωb0 => 0.05, YHe => 0.25, Tγ0 => 2.7, Neff => 3.046, mh_eV => 0.02)
prob = CosmologyProblem(M, pars)
Cosmology problem for model ΛCDM
Stages:
Background: 5 unknowns, 0 splines
Perturbations: 54 unknowns, 5 splines
Parameters & initial conditions:
YHe = 0.25
Ωb0 = 0.05
Tγ0 = 2.7
Ωc0 = 0.3
Neff = 3.046
h = 0.7
mh_eV = 0.02
Now solve it for some wavenumbers:
ks = [4, 40, 400, 4000]
sol = solve(prob, ks)
Cosmology solution for model ΛCDM
Stages:
Background: return code Terminated; solved with Rodas4P; 1301 points
Perturbations: return codes Success; solved with KenCarp4; 96-1316 points; x4 k ∈ [4, 4000] H₀/c (interpolation in-between)
Now plot the evolution of the variables you are interested in:
using Plots
p = plot(layout = (3, 1), size = (800, 1000))
plot!(p[1], sol, τ, a)
plot!(p[2], sol, log10(a), [Xe, XH⁺, XHe⁺, XHe⁺⁺]; legend_position = :left)
plot!(p[3], sol, log10(a), [Φ, Ψ], ks)
This unstructured model is provided as a secondary way to work with SymBoltz in the hope that it is useful. It may not always be up-to-date with the equivalent structured model built from physical components, which is the primary and best supported interface to the code. Because it is unstructured, this model is only available for the standard ΛCDM model. It cannot and will not include all combinations of extended models in a way that scales well in model space. To enable and disable components, you have to manually edit them in and out yourself. For this it can be helpful to look at SymBoltz' library of components in the src/models/ directory (this model is essentially a copy-paste of those components).